Einfach erklärt: Was ist Künstliche Intelligenz?

Künstliche Intelligenz – eine Zukunftstechnologie auf dem Vormarsch

 Cognitive Process Automation

Kaum ein Thema beschäftigt die Unternehmen mehr als die Digitalisierung. Nahezu jedes Unternehmen verfolgt eine entsprechende Digitalisierungsstrategie. Neben Robotic Process Automation, Big Data und der Blockchain-Technologie gilt vor allem die Künstliche Intelligenz als wegweisende Zukunftstechnologien. Kaum eine Digitalstrategie kommt heutzutage ohne Künstliche Intelligenz aus. Nachfolgend zeigen wir Ihnen das Potenzial dieser neuen Technologie auf und verdeutlichen, wie die Technologie bereits heute im Unternehmensumfeld genutzt wird.

Was ist Künstliche Intelligenz?

Die Künstliche Intelligenz, englisch Artificial Intelligence, ist ein Teilgebiet der Informatik und setzt sich mit der Automatisierung intelligenten Verhaltens auseinander. Hierbei greift die Technologie auf eine Simulation künstlicher Artefakte zurück, die im Regelfall mit Computerprogrammen auf einem Computer ausgeführt werden. Die Definition des Begriffs lässt sich auf den amerikanischen Informatiker John McCarthy zurückführen. Diese benutzte den Begriff im Jahr 1956 als Überschrift eines Projektantrags für eine mehrwöchige Konferenz. Im Zuge der Konferenz wurden zahlreiche Programme vorgestellt, die eigenständig Schach und Dame spielten, unterschiedliche Theoreme lösten und Texte interpretierten.

Bei der allgemeinen Definition des Begriffs wird vor allem auf die Imitation des menschlichen Entscheidungsverhaltens referenziert. Durch die spezifische Programmierung eines Computers sollen auf eine einfache Art anspruchsvolle Probleme gelöst werden. In der Praxis tragen einfache Algorithmen dazu bei, ein intelligentes Verhalten zu imitieren. Ein besonderes Forschungsgebiet ist hierbei die starke KI. Hierunter versteht man eine Künstliche Intelligenz, die das menschliche Verhalten mechanisieren soll. Eine Maschine soll sich so intelligent wie ein Mensch verhalten. Bis heute gelten die Ziele der starken KI als visionär und konnten nicht umgesetzt werden.

Was bedeutet künstliche Intelligenz im Detail?

In der Theorie reden wir von Künstlicher Intelligenz, wenn ein Computer Probleme löst, für deren Lösung eigentlich die Intelligenz eines Menschen benötigt wird. Grundsätzlich unterscheidet man zwischen einer starken und einer schwachen KI. Während die starke KI das komplette menschliche Denken mechanisieren soll, dient eine schwache KI zur Lösung konkreter Anwendungsprobleme. Sie soll dazu beitragen, den Menschen beim Denkprozess zu unterstützen.

Des Weiteren stellt das Lernen eine der zentralen Fähigkeiten einer jeden KI dar und muss bereits zu Beginn erfüllt sein. Zusätzlich muss eine Artificial Intelligence mit Unsicherheiten umgehen können. Zusammenfassend soll eine schwache KI ein intelligentes Verhalten simulieren und dabei auf Grundsätze der Mathematik und Informatik zurückgreifen. Die Entwicklung einer starken KI scheiterte bislang an philosophischen Grundfragen, da ein solches System dem Menschen sehr ähnlich sein muss.

Die Entwicklung der künstlichen Intelligenz unterteilt sich in die nachfolgenden Teilgebiete:

  1. Wissensbasierte Systeme: Sie modellieren eine Form der rationalen Intelligenz und stellen die Grundlage für Expertensysteme dar. Durch ein formalisiertes Fachwissen können diese Systeme logische Antworten geben. Insbesondere in den Bereichen der Diagnostik sind diese Systeme anzutreffen.
  2. Musteranalyse und -erkennung: Dieser Forschungsbereich setzt sich mit der Analyse und Erkennung komplexer Muster und Formen auseinander. Entsprechende Programme sollen Handschriften identifizieren, Gesichter erkennen und Fingerabdrücke abgleichen. Auch die Sprachsynthese und die Spracherkennung gehören zum Themengebiet der Musteranalyse.
  3. Robotik: Im Zuge der Robotik liegt der Fokus auf der manipulativen Intelligenz. So können Roboter besonders kritische und gefährliche Aktivitäten übernehmen und den Arbeitsalltag des Menschen optimieren. Der Fokus liegt auf der Entwicklung intelligenter Roboter, welche das menschliche Verhalten imitieren.
  4. Mustervorhersage: Hierbei handelt es sich um eine Erweiterung der Mustererkennung und zeitgleich um die Grundlage des hierarchischen Temporalspeichers. Laut Jeff Hawkins ist eine Vorhersage nicht nur eine Tätigkeit des Gehirns, sondern das Fundament einer jeden Intelligenz. Die entsprechenden Systeme erkennen nicht nur Objekte in Bildern, sondern sagen auch hervor, wohin sich ein Objekt bewegen wird.
  5. Künstliches Verhalten: Die Entwicklung einer KI überlappt sich mit der Forschungsdisziplin des künstlichen Lebens. Dementsprechend handelt es sich hierbei um eine Subdisziplin. Beim Artificial Life müssen sämtliche Erkenntnisse implementiert werden, sodass die Kognition als Grundlage des menschlichen Lebens zum Bestandteil der KI-Forschung wird.
  6. Modellierung auf Basis der Entropiekraft: Der Physiker Alexander Wissner-Gross schlägt vor, dass intelligente Systeme auf Basis der Entropiekraft modelliert werden. Die Entropiekraft hat ihre Ursache in der thermischen Bewegung der Teilchen unter einem von außen angelegten Zwang. Ein intelligenter Agent versucht stets die Umgebung durch intelligente Handlungen zu verändern. Im Resultat soll eine große Handlungsfreiheit generiert und ein Zukunftszustand erzeugt werden.

Geschäftsprozessautomatisierung mit Software-Robotern

Vorteile von RPA

  • Kostensenkung
  • Effizienzsteigerung
  • Mitarbeiterentlastung
Kostenlose Erstberatung mit unseren RPA-Experten! Robotic Process Automation

Kostenlose Erstberatung mit unseren RPA-Experten!

In einer kostenlosen Beratung zu Robotic Process Automation erläutern Ihnen unsere erfahrenen RPA-Consultants, wie Sie die Geschäftsprozesse in Ihrem Unternehmen mit Robotic Process Automation automatisieren können und beantworten gerne Ihre Fragen.

Ab wann gilt eine Maschine als intelligent?

Grundsätzlich stellt sich die Frage, ab wann eine Maschine als intelligent eingestuft wird. Zunehmend zeichnet sich ein Wandel ab. Fokussierte sich dieses Themengebiet in der Vergangenheit vor allem auf die Entwicklung intelligenter Computerprogramme, gewinnt mittlerweile auch die Erforschung des menschlichen Denkens zunehmend Relevanz. Da die Entwicklung einer intelligenten Maschine zwangsläufig mit der Erforschung des menschlichen Denkens einhergeht, gibt es hier Überschneidungen zwischen der KI-Forschung und der Neuropsychologie.

Um die Intelligenz einer Maschine zu bestimmen, kann der Turing-Test als akzeptiertes Messwerkzeug genutzt werden. Dieser wurde bereits im Jahr 1950 von Alan Turing, einem britischen Mathematiker, entwickelt. Im Rahmen des Tests kommuniziert ein Mensch über längere Zeit via eines Chatprogramms mit einem anderen Menschen und einer Maschine. Beide Testteilnehmer versuchen hierbei, den Initiator von einem menschlichen Verhalten zu überzeugen. Sobald der Tester nach dem Test nicht eindeutig bestimmen kann, welcher Gesprächspartner der Mensch ist, gilt der Test als bestanden – die Maschine gilt als intelligent. Bereits im Jahr 1991 wurde der Loebner-Preis über 100.000 Dollar für die Entwicklung einer Maschine ausgeschrieben, die einen erweiterten Turing Test besteht. Bis heute hat jedoch noch niemand diesen Preis erhalten.

Wie funktioniert Künstliche Intelligenz in der Praxis?

Heutzutage sind die Einsatzfelder Künstlicher Intelligenz besonders vielfältig. Der Einsatz von KI wird aber noch nicht bewusst wahrgenommen. Insbesondere in der Medizin gilt der Einsatz von künstlicher Intelligenz als ein Erfolg. So führen intelligente Maschinen bereits heute zahlreiche Operationsschritte durch und sind hierbei präziser als ein menschlicher Chirurg. Auch in den Produktionen großer Automobilhersteller kommen Roboter zum Einsatz, die den Menschen den Arbeitsalltag erleichtern. Gefährliche Tätigkeiten, die einen unmittelbaren Einfluss auf die Gesundheit ausüben, werden mittlerweile von Robotern übernommen. Klassischerweise lassen sich Aufgaben wie das Schweißen oder Lackieren automatisieren. Auch Computerspiele wie Schach greifen auf Künstliche Intelligenz zurück. Zudem basieren immer mehr Expertensysteme, die in spezialisierten Einsatzgebieten genutzt werden, auf Künstlicher Intelligenz. Hierzu gehören beispielsweise Systeme, die Computertomografien in dreidimensionale Bilder umwandeln. Durch solche Tools haben Ärzte die Möglichkeit, um sich ein spezifisches Bild von jeder Körperpartie zu machen.

Für die Erforschung von Künstlicher Intelligenz existieren in der Theorie zwei potenzielle Dimensionen. Hierbei handelt es sich um die neuronale KI, die das menschliche Gehirn möglichst präzise nachbauen möchte. Das entsprechende Gegenstück ist die symbolische KI. Diese nähert sich der Intelligenz über die begriffliche Ebene und orientiert sich an den kognitiven Prozessen des Menschen.

Als Entwicklungstechniken lassen sich die folgenden Gruppen definieren:

  1. Suchen
  2. Planen
  3. Logisches Schließen
  4. Optimierungsmethoden
  5. Approximationsmethoden

Weissenberg Intelligence – Ihr kompetenter Partner in allen Fragen der digitalen Transformation Anmeldung

Weissenberg Intelligence – Ihr kompetenter Partner in allen Fragen der digitalen Transformation

Möchten auch Sie die Wettbewerbsfähigkeit Ihres Unternehmens im digitalen Zeitalter stärken? Wir beraten Sie gern zur digitalen Transformation Ihres Unternehmens.

5 Beispiele: So wird Künstliche Intelligenz in Unternehmen eingesetzt

Bereits heute nutzen viele Unternehmen künstliche Intelligenz, um Mehrwerte für die Benutzer zu generieren. Nachfolgend stellen wir Ihnen einige der bekanntesten Praxisbeispiele vor:

Beispiel 1: Google – nahezu jedes Produkt ist intelligent

Bei der Google ist nahezu in jedem Produkt ein intelligenter Algorithmus verbaut. So lernt beispielsweise der Google Übersetzer mit jeder weiteren Übersetzung und wird stetig besser. Insgesamt gilt der Konzern als Vorreiter in Sachen KI und führt immer mehr Services ein. Zusätzlich besteht der Alphabet-Konzern aus vielen innovativen Unternehmen, die sich mit der Entwicklung Künstlicher Intelligenz befassen. Das wohl bekannteste Beispiel aus diesem Bereich ist DeepMind. Das offizielle Unternehmensziel von DeepMind ist, Intelligenz zu verstehen

Beispiel 2: Amazon – Daten für ein besseres Kundenverständnis

Amazon verbinden viele Nutzer mit dem e-Commerce. Dabei fokussiert sich das Unternehmen besonders stark auf den Bereich der Künstlichen Intelligenz. Immer mehr Nutzerdaten werden verarbeitet, um intelligente Produktvorschläge zu erstellen und somit eine schnelle Kaufentscheidung zu forcieren. Machine Learning-Algorithmen analysieren das Such- und Kaufverhalten der Anwender, während sich die Lagerzentren auf die aktuellen Prognosen einstellen. Auch Alexa gilt als prominentes Beispiel für den Einsatz von KI.

Beispiel 3: Apple – einfache Implementierung von KI in Apps

Auch Apple setzt auf den Bereich der Künstlichen Intelligenz und erleichtert mit Core ML 2.0 das Programmieren ungemein. Entwicklern wird ein einfaches Tool an die Hand gegeben, das die Integration von AI in Apps ermöglicht. Hierbei werden die aufwendigen Berechnungen direkt am Endgerät ausgeführt und somit der Kontakt zwischen Server und Endgerät vermieden. Insbesondere aus der Sicht des Datenschutzes ist dies ein Vorteil.

Beispiel 4: Operationsunterstützung durch intelligente Roboter

Ein besonders großes Einsatzgebiet für intelligente Maschinen ist der Gesundheitsbereich. Neben umfangreichen Analysen sowie der Identifikation von unerwünschten Zellmutationen gelten insbesondere Operationen als Anwendungsgebiet für intelligente Roboter. Bereits heute unterstützen diese bei Operationen und führen komplizierte Eingriffe durch, die für Chirurgen zu komplex und risikoreich sind.

Beispiel 5: Autonomes Fahren

Auch das autonome Fahren gilt als ein relevantes Zukunftsthema, das die Fortbewegung revolutionieren wird. Mithilfe umfangreicher Live-, Sensor- und Fahrdaten können Fahrzeuge in Zukunft eigenständige Entscheidungen treffen. Der Nutzer wird zum reinen Insassen und die intelligente Technik sorgt für einen reibungslosen Transport zum gewünschten Zielort. Insbesondere komplexe Entscheidungen soll die KI in diesem Fall treffen und somit die Sicherheit im Straßenverkehr verbessern.

 Robotic Process Automation

Fazit

Wie bereits zu Beginn angemerkt wurde, befindet sich die KI als eine der wichtigsten Zukunftstechnologien in nahezu jeder Strategie wieder. Vor allem im Laufe der kommenden Jahre kann die Entwicklung von Künstlicher Intelligenz zur Automatisierung von Prozessen und somit zur unmittelbaren Produktivitätsoptimierung beitragen. Die Forschung befindet sich noch in den Anfängen, sodass technologische Optimierungen mit einem enormen Mehrwert für die Nutzer und Unternehmen einhergehen.

Hinterlassen Sie einen Kommentar:

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.